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Abstract -An eigenfunction e!\pansion is developed for the determination of the three-dimensional
stress field in the neighborhood of the intersection of the free edge of a hole and an interface in a
laminated composite plate. For transversely isotropic klminae. the stress field is shown to possess a
weak singularity whose strength depends on the material constants. the fiber orientations of the two
adjacent laminae as well as the polar angle O. Results for [0 i90 ). [0170]. [0/45). and [0/20] are
presented and the best and worst fiber orientations are identified.

Finally. the interlaminar stresses arc computed and the vari'ltion as a function of the .mgle 0
is identified. The circumferential stress U,H' is shown to possess a small jump across the interface.
Results for its behavior in the interior of each layer arc also given.

I. I~TRODUCTION

Despite careful tksign. practically every structure contains stress concentrations due to
holes. Bolt holes and rivet holes are necessary components for structural joints. It is not
surprising. therefore. that the majority of service cracks nucleate in the vicinity of a hole.
While the subject of stress concentrations is certainly familiar to engineers. the situ.Hion is
significantly more complex in the case of high-performance laminated composite materials.
The presence ofa hole in the laminate introduees significant stress contributions in the third
dimension which create a very complicated three-dimensional (3-0) stress Held in the
vicinity of the hole. Moreover. this complex state of stress may depend on the stacking
sequence of the laminate. the tiber orientation of each lamina as well as the material
properties of the tiber and of the matrix. Ultimately. these stress concentrations form a
primary souree of damage initiation and property degradation. p'lrticularly in the presence
ofeyclic loadings. Recent experimental investigations carried out by Bakis and Stinchcomb
(1986) on graphite epoxy laminates which have been weakened by a circular hole give us
a better insight of this damage growth development under the action of cyclic loadings. In
general. the progression of this damaged process may be characterized as (i) debonding
along tiber-matrix interfaces. (ii) matrix cracking paralic.:! to the fibers. (iii) matrix cracking
between Hbers. (iv) dc.:!amination along the interface of two adjacent laminae with different
fiber orientations. and (v) fiber breakage.

Thus. if rational designs using Hber-reinforced -resin matrix composite laminates are
to be made. their performance under static. dynamie. fatigue and environmental loads need
to be predictable. The first step tow<lrds this goal is the realization that the ultimate failure,
as well as many other aspects of the ~omposite behavior. is the result of the growth and
ac~umulationof microdamage to the fibers. matrix and their interfa~es. Thus. it appears
that any generally successful model of performance and failure must incorporate the effects
of this damage in some way. This certainly represents a challenge. In this paper. we will
address only one form of such damage. that of delamination.

Delamination has long been recognized as one of the most important failure modes in
laminated composite structures. The growth of a delamination may result in a substantial
reduction of strength and stiffness of the laminate. The identification. therefore. of such
locations in a composite structure is of great interest to the designer. Experimental studies
by Pipes e/ al. (1973) have shown that the delamination mode of failure is most likely to
initiate at the free edges. One conjectures. therefore. that the stresses at the intersection
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between a free edge and an interface may well be singular. Indeed, recent analytical inves­
tigations (Wang and Choi, 1982: Zwiers el al.. 1(82) on straight free edges show that a
stress singularity exists there for certain types of laminates.

Alternatively, a curved free edge is inherently ,I 3-D probkm which presents greater
mathematical difliculties. For this reason, past analyses have been based primarily on finite
element methods with standard tinite elements (Raju and Gn:ws, 1(82), as wdl as elements
which incorporate the stresS singularity in the formulation (Rybicki and Schlllueser, 1978:
Ericson cl al., 1984). While such methods can provide us with stress trends in the boundary
layer region, it is rather diflicult to extract from them with certainty the order of the
prevailing stress singularity which is present at the material interface. Moreover. experi­
mental investigations carried out on straight edges by Pagano (1974) show that the laminate
stacking sequence can clrect the static strength of the laminates. Similar experimental
observations were also made by Daniel el al. (1974) on plates with circular hoks. The
subject, therefore, docs warrant further investigation.

Recently, Folias (1988) investigated analytically the interlaminar stresses at the bound­
ary layer of a hok free-edge, but for two isotropic materials of dil1crent material constants.
The analysis showed that the stress field there possesses a weakt singularity, which singularity
depends only on the material properties. In this paper, the author extends this analysis to
include also transversely isotropic laminae with a [0/90], [0'/45 '] as well as other stacking
sequences.

2. FORMULATION OF THE PROBLEM

Consider the equilibrium of a laminated composite plate which occupies the space
Ixl <x, IYI <x and 1=1 ~ 211 and contains a cylindrical hole of radius a whose generators
arc perpendicular to the bounding planes, namely == ± 211. The plate consists of laminae
made of transversely isotropic material with a 0'190/0 stacking sequence. Let the plate be
subjected to a uniform tensile 10,ld 17" along the y-axis and parallel to the bounding planes
(sec Fig. 1).

t Less th"n O.JJ.
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In the absence of body forces. the coupled differential equations governing the dis­
placement functions lI. r and If are

where the c" terms arc the material constants defining a layer which has its fibers running
parallel to the x-axis. For the next layer. the fibers will be running parallel to the y-axis and
the governing equations will be obtained from the above by simply interchanging the
appropriate coordinates.

The stress-displacement relations for the layer arc given by the constitutive relations

rT n Cil C 1! C.l 0 0 0 l\\"

rr rl' C!I C!! C!1 0 0 0 (' ~T

fT..: C 11 C 1! C\1 0 0 0 ('::

r ,.: 0 0 0 C.I .I 0 0 2£',,:

r ,: 0 0 0 0 ('5' 0 2(' t:

r 'I' 0 0 0 0 () C"h 2£'0'

As to houndary conditions. we require that:

at : = ±2h: the surface stresses lllust vanish

(4)

(5)

at ±h: the displacements and surface stresses must match (6)

at r = a: the surface stresses must vanish. (7)

Finally. in order to complete the formulation of the problem. the loading conditions far
away from the hole must be satisfied.

3. ASYMPTOTIC SOLUTION AT TilE INTERFACE

The main ohjective of this analysis is to derive an asymptotic solution for the 3-D
stress field in the immediate vicinity of the region where the interface between two laminae
meets the free-of-stress surface of the hole. Thus. guided by a general analytical solution
for the equilibrium of a linear elastic isotropic layer which Folias and Reuter (1990)
and Folias and Wang (1990) have recently constructed. we assume the complementary
displacement field to be of the formt

(i) for lamina [0 J

(8)

t The angle (I is defined in Fig. I.
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(9)

( 10)

( II )

In writing the ahove displacements. we used a cylindrical coordinate system (see Fig. I)
and. rurthermore. assumed that (r - tI) « u. In view or the ahove. one. hy direct substitution.
Gill show·~ that the governing equations (I) (3) are indeed satisfied provided the unknown
runction If satislies the dillcrential relation

where the (J, (" and (J are runctions or C" and lJ. and n:present the roots or the cubic
equation

( 19)

with

T, = (C II sin~ lJ + Coo cos~ 0)(Coo sin~ lJ + C~! cos~ 0)( C 51 sin~ 0+ CH cos~ 0)

- 1(C, ~ + C hO)l( C II sin! 0+ C H cos~ 0) sin! (20) (20)

T! = (C II sin~ () + C hO cos~ O)[C 3.'(Chh sin! 0 + C~! cos1 0)

+CJ(C 55 sin l 0+ C H cos2 0) - (e!J + CH )! cos! OJ

+ (C,!+ C oh )[2(CH + C 4J )(CJI + C 55) sin2 0- (C!I +COh)C 3J sin! OJ cos~ 0

- (C,)+ C 55)~(C66 sin: 0+ C l2 cos! 0) sin2 0

+ C 55 (C 66 sin! fJ+ C 22 cos2 0)(C 55 sin2 0+ CJ cos: 0) (21)

t Write tlrst the governing equations in cylindrical coordinates and then usc the assumption. See
Appendix A.
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T) = Css[Cn(C66 sin2 9+ Cn cos2 9) + C44(C ss sin2 9+ C44 cos2 9)

- (CZ) + C44 )l cos2 9] - (C.) + CSS )zC44 sinl 9+ [CII sinl 9 + C66 cosl 9]CnC44 (22)

(ii) for lamina [90°]

{

2 '} ,-.12l _ 0 - o· o· H
v - cos 9 Tz, 0(r-a)2 +/n O(h-Z)2 o(r-a)o(h-z)l

(24)

(25)

(26)

(27)

(28)

(29)

(30)

and the function H(r-a,h-z) is of the same form as the H of layer [0"], except thall" £2'

£) are now replaced by the appropriate l" l2,l) of layer [90"]. It remains, therefore, for us
to construct a solution to eqn (18). To accomplish this, we introduce the local, to the corner,
stretched coordinate system (see Fig. 2), i.e.

SAS 29,2-D

r-a = p cos c/J

(h-z) .
C =psm¢.

..;£,

INTERFACE~-;:~----r

Fig. 2. Definition of local coordinates at the interface.

(34)

(35)
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Omitting the long and tedious mathematical details. the solution to equation (18). in terms
of the local coordinates. is found to bet

where

I J~ .', }! ). ')'+---~2- tit 2(~) sin [(:x - 2)(lp 2 - ~)l d~ I J. •
(:x-) 0 \1-'/

(37)

P2

I-'

J
--------

( I •
I +-- tan'lp

( 2

\,1 +tan 2 IP
(3X)

IP2('P:l = C:;Y J{A'COS[(X-4)tan I (J~: tanIP2)]

+1J\Sjnl~X-4)tan I(J~:tanljJ2)J}. (.\9)

(41 )

and 1., .-I, and 1J, (i = 1.2.3) are constants to be determined from the boundary conditions.
Substituting the previously constructed displacement field into the boundary con­

ditions:

atlp=():

(42)

(43)

(44)

(45)

(46)

(47)

at IP = - (n!2) :

(4X)

t See Appendi~ A for details.
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t'~tP = 0

177

(49)

(50)

(51 )

(52)

(53)

we arrive at a system of 12 algebraic equations. the determinant of which must vanish. This
latter condition leads to the determination of the characteristic values a. In general. the
values of:x depend on the material constants eir as well as on the angle e.

4. TilE ISOTROPIC CASE

As a limit check. we let the laminae be homogeneous and isotropic but of different
material constants. Without going into the mathematical details. the material constants of
lamina I become:

in view of which the displacements reduce to:

(I) • 0 0 {G, [0 2
cJ

2

]} c2H
1/ = sin --- --- , + , ,

oCr-a) 1-2v, o(r-a)- o(h-:)- c(h-:)-

(54)

(55)

(56)

(57)

(58)

(59)

Notice that the O-dependence has totally been eliminated and that the function H now
attains the very simple form

If = p' {A I cos (acjJ) + B, sin (at/» +A 2 cos (ex - 2)cjJ

+ B2sin (eL - 2)t/> +A J cos (:x -4)¢ + BJ sin (ex -4)cjJ} + (p'+ I). (60)

Similarly. the Ii collapses to the same expression except that the constants A, and Bi are
replaced by Ai and ii;, respectively. The numerical results for this case lead to the same
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Fig. 3. Singularity strength for isotropic laminac.

results as those recently reported hy Folias (19XR). Figure .I, for examplc, depicts typical
values 01''1..

5. CIlARAClTRIZATION OF TilE FREI~·ED(jE STRESS SINGULARITY

Returning next to the algehraic system (42) (5.1), if one considers the case of a
graphite/epoxy layer. with codlicients c,} (Knight. 19S2):

20.622X I.OJXI I.OjX I 0.0000 0.0000 0.0000

I.(UXI 2.2.101 1.2301 0.0000 0.0000 0.0000

I.03X I 1.230 I 2.2301 0.0000 0.0000 0,0000
C,I "" O.OO()O 0.0000 0.0000 0.5000 0.0000 a.oooo . (61 )

0.0000 0.0000 0.0000 0.0000 O.X696 0.0000

0.0000 0,0000 0.0000 0.0000 0.0000 0.8696

then the requirement of the determinant of the system to vanish leads to a transcemkntal
equation for the roots '1.. The only roots of practical interest arc those which Iil: in the
intcrval 5 < Re':J. < 6. The numcrical results for the 12 x 12 system were carried out in
double precision. Omitting the long and tedious numerical details. the values of the charac­
teristic ':J. for [0/90 ]. [0170 ]. [0 '(45] and [0/20] interfacest arc shown in Fig. 4. Two
important characteristics are worth mentioning. First. the stress singularity is a function of
the material constants C/, the angle of sweep () and the fiber orientation of the respective
laminae. Second. the singularity strength for anisotropic materials appears to be much
weaker than that of isotropic materials. The latter may have severe consequcnces to the
damage process and to thc reduction of the overall strength in the plate. As a practical
matter. if one plots the max ('1. - 6) as a function of the fiber angle orientation Pfor a [0'/In
interface one can identify the most and least desirable fiber orientations. This is depicted
in Fig. 5.

Similar stress singularity profiles (see Fig. 4) have also been obtained by Wang and
Choi (1982) in their pioneering work on straight edges using a different method of solution.
The present analysis complements this and shows that, for sufficiently large holes. the results

tThe resulls for the stresscs are presently gcncrali7.ed for an arbitrary [O/fll interfacc.



Boundary layer e!fel:ts of interlaminar stresses 179

602

600

598
[0·/zo·1

596

5.94
e1

592

590

588
[0'Y90·1

586

584
0 20 40 60 80

80 .(8- : )

Fig. 4. Singularity strength for transversely isotropic laminae [0 '/90 l

-0
I

C
~ -O.os

)(

o
~

{3

Fig,S. Best and worst tiber orienl;llions.

for curved edges will be the same as those obtained near a straight free edge provided layer
orientations in the second problem are properly chosen to renect the circumferential position
of a point on the hole boundary and the interface. While this result was to be expected, it
could not be taken for granted. This is because the latter method represents a discrete,
rather than a continuous, approach and the outcome of the limiting process had to be
established. Moreover, the present method ofsolution shows how a 3-D analysis can indeed
be developed to include also this continuous dependence on the angle 0 and thus provide
us with further insight on the construction of such 3-D solutions to transversely isotropic
plates with more complicated flaw geometries.

It may further be noted that the macromechanical approach actually underestimates
the value of the stresses at such regions. For example, if we examine the local geometry
from a micromechanical point of view. e.g. at 0 = o~ and for a [0"/90°] interface, one notices
that the adjacent fiber of layer [90'] intersects the free surface of the hole boundary
perpendicularly. The explicit 3-D solution for the stress field in such regions is also known.
In particular. for a glass fiber embedded into an epoxy matrix the stress singularity is found
to be 0.2489 (Folias. 1989. 1990) while for a carbon fiber embedded into an epoxy matrix
is found to be 0.307 (Folias and Li. 1991). The former analysis assumes the fiber to be of
an isotropic material while the latter assumes the fiber to be of a transversely isotropic
material. Comparing these results with those of Fig. 4 it is clear that the stress singularity
predicted by the macromechanical theory is indeed underestimated. Such information
becomes essential for the proper estimation of the local damaged zone. This matter will be
discussed further later on.
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data.

In the case of a [Uj90] interface. the profile of the charactcristic value 2 versus /} is
symmetric with respect to the line (} = 45 '. The same behavior was also obtained by Ericson
{'{ al. (I n4) by using finite clements. The present results. however. ex.hibit a stronger
singularity than that found in the above reference. The author attributes this to two factors.
First the material constants were different and second it is rather dilllcult to obtain accurate
results for the singularity strength based on finite elemcnt analyses. On the other hand. it
is impressive inth:ed that Ericson ('{ al. (19X4) as well as Raju and Grews (In2) were able
to recover the exact prolile as a function of () and the relative magnitude.

In order to make a proper comparison with the results of Ericson {'{ al.. one should
use the same material constants. C'f' as they used. Computing. therefore. the e" values from
their data (see Appendix B). our analysis gives the characteristic values depicted in Fig. 6.
At () = 45 '. for example. a = 5.9755 or 2 - 6 = 0.0245. If we now compare this value with
that found by Wang and Choi (19X2). for II ±45' straight edge interface. i.e. :x - 6 = 0.0255.
we sec that the comparison is very good. The minor difference is probably due to the small
variation of the e" values used depending as to how they arc computed. Our results arc
based on the e" values shown in Appendix B. The results in the region between 20 < (} < 70
compare very well with those reported by Ericson c{ ul. On the other hand. for 0 :;;; V :;;; 20.
our singularity stn:ngth is found to be slightly higher. and the characteristic bell-shaped
profile is preserved.

Pagano and Pipes (1973) have shown that high-tensile (1:: stresses arc associated with
decreased laminate strengths. This observation points to the importance of understanding
the interlaminar stress behavior near free edges in laminates. It is now possible to compute
the interlaminar stresses adjacent to the hole surface. In particular.

(62)

where the fJi are rather long and complicated functions of the angles V and 4) and the
material constants. The plots for (1::, rr:. rt/:. for a [0 ;90] interface. arc given in Fig. 7.
Notice that the max.imum a" stress for a [0'/90] interface occurst at V = 23 . The result
is in agreement with that found previously based on finite clements (Ericson e{ al.• 1984;
Raju and Grews, 1982).

The reader may also note that all the stresses arc normalized with respect to a function
C(O). which is negative. and may vary as one travels along the direction of O. More
specifically. the function represents the coellicient .4.1' Through a separate analysis. which
is to be valid across the thickness of the plate. it can be shown that the function is related
to the magnitude and in-plane direction of the applied load (1n. This part of the development

tThe reader should also take into account the fact that (6-'t) is a m:uimum at n' = -15 and that CUI) is
negative. The results arc hased on data given hy eqn (Ill). Also. at II = O. C(lI) ~ -1.0(")'- '11 0 ,
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is presently being completed. and the results will be reported in a follow up paper. In this
second paper. the author also intends to couple the present macromechanical results with
other newly derived results. which are based on 3-D micromechanical considerations. in
order to predict local damage initiation. The present analysis, however. does provide us
with the relative magnitudes of the interlaminar stresses (sec Fig. 8). Moreover. the solution
in its present form is very general. with the characteristics of the applied load being reflected
only through the function C(O).

The results show the shear stress rr: to be rel'ltively low throughout. On the other hand.
the normal stress a:: appears to be dominant in the range - 30' ~ () ~ 30'. beyond which
the shear stress 1;1/, becomes the controlling stress. i.e. along 30" < () < 60'. with its maximum
occurring at 0 = 45'. A clearer plot I'(>r thc stress a:: at the interface is given in Fig. 9.
Fin.llly, Fig. 10 depicts the jump which exists on the stress UI/ll as one moves across the
interf:'l\;c. i.c. at Ip = O' and IP = 0 '-. The maximum dillcrence occurs at () = 0 and is
approximately 27%. In Figs II and 12 wccompare the stress uIJ\~1 at r/> =0- and IP = -90'.
and ul,:O\ at (p = 0+ and r/> = +90".

In view of the above, one may draw the following conclusions lor a [0{90'1 stacking
scqucnce:

(a) In the vicinity of the interf'lce there exists a boundary layer effect where the stress tlelt!
changes rather abruptly.

(b) The risk of delamination initi.ttion is highest at () equal to 23".
(c) As one moves away from the plane of the interface, the stress concentration factor in

layer [90] decreases rapidly (see region - 20 < () < 20 where debonding along liber
matrix interfaces is most likely to initiate).

(d) Substantial d'lmage is expected in the region _40" < 0 < 40".
(e) For the given set of material constants. C;j' (%-6 is maximum at O· = 0:' == (fJ{2).
(I') In general. the magnitude of the singularity strength depends on the material constants,

C'I' and on the fiber orientation of the two respective laminae.
(g) As one moves approximately one radius' distance away from the hole surface, the s.c.f.

(stress concentration factor) is expected to decrease to within 10% of the value of the
corresponding case of a plate without a hole (Folias and Wang. 1990: isotropic case).

6. DISCUSSION

Delamination at free edges has been a problem of significant concern in the design of
advanced tiber composites. The separation of the laminae, caused by high local interlaminar
stresses and low strength along the laminae interface, may result in ineffective load transfer,
reduction in stiffness and ultimately loss of structural integrity_ In this study, the problem
has been investigated by treating each lamina as a homogeneous, transversely isotropic,
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material. Thus the micromechanic effects of fiber size arc not included, although a few of
these effects, e.g. when a fiber meets a free surface, have been reported separately by Folias
(1989,1990).

The analytical investigation of the 3-D stress field adjacent to the hole and in the
vicinity of the interfaces of two laminae of [0" 190~], and [0~/45'1,and other fiber orientation,
shows the stresses to be singular, !lit - 1'" <>. In general, the singularity exponent depends
on the material properties, the corresponding fiber orientations as well as the angle of
sweep. The results provide us with better insight for the proper understanding of inter­
laminar stresses and the effect which they have on the mechanism of failure. For example,
for isotropic laminae the stress singularity is a rather weak singularity «0.33), while in
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Pipes /'1 al. (1973) and Pagano (1974) postulated that throughout tht: thi~knt:ss it is
the stress (T:: whidl is the main causc of delamination for polymcr-based structural
composites. This observation was based on cxpcrimt:ntal as wcll as analytical evidence for
laminates with dil1crt:nt stacking seq uenccs. Our analytical results arc consistent with this
observation particularly in the region wht:re 0 is small. Alternatively. for larger values of 0
the shear stress !U: plays a much more dominant role on interlaminar failures. Moreover.
in the case of a [OJ/90 '] interface delamination is most likely to take place at 0 = 23". The
strain energy release rate may now be used in conjunction with the local stress field to
predict delamination failures. This matter is presently under investigation.

Finally. one may conclude that it is possible to reduce the likelihood of the delamination
mode of failure and thereby increase the laminate strength. This can be accomplished by
carefully considering the effects of the singularity curves. the stress curves. the load direction
and the individual fiber orientations at each interface. Moreover. in future applications it
may be possible to choose the material constants elj so that the coefficients of the singular
terms of the interlaminar stresses vanish.
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APPENDIX A

"(,,.i/fl'iJ{;on nl\olulitHl (n/Il (,,(,))

lise 10.:al c:oordinatc:s ddined hy eqns (J~I and (-'';) to Wrtte eqn (I X) ill the forlll

ddine

V;II ," ()

and assUllle

F, = ,·1, ':llS (2 -~)I~, + IJ, sin (2 --~),~,

whef<~

J . (h-:,~
/" ~ (r-I/)- + -

"
,/>,=tan '((/'-:)"").

r-ll

Thu,



and

ctc. for vi and Vi.

S,,{ut;"" ofsntt'ffl (I) (3)
Let .

Boundary layer effc::cts of interlaminar stresses

, (h_;:)2
(r-a)'+--­

(,

(, (h-:)'
I+~ ,

() (,(r-a)'

(h-:)'
1+---,

(,(r-a)"

(h-:) r;; I h-;:

tan t/J, = ~(r-Cl) = V-;; Fz r-CI

.,( r;; )=- q" = tan V-;; tan q" '

/JU vU cos 0 /JU
u = ..... =sinO --_. + ._._.- '-'

iJx v(r -a) r i!O

iJV vV ~nOvV
v = '. =cos (} .-_..- - --.- .'O-

ily vIr-a) r iJO

DW
w=~j:~'
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Su.:h a substitution eliminates the cross type of derivatives. Then utilize .:ylindrical coordinates and use the
assumption (r-al/a« I. By dire.:t substitution, one can then show that the simplilied governing clIu.llion is
indeed satislicd provided that fun':lion II satisfies eqn (Ill).

APPENDIX B

From Ericson etal. (1984) d;lIa:

Ell = 1311 GPa l::" = Ell = 14.5 GPa

Gil = Gil =G lI =5.9 GPa

we compute:

Cll = 139.6381

C n = 3.9002

CI.I = 3.9002

C" = 15.2779

C" = 3.2944

Cn = 15.2779

C.. = C" =Cu = 5.9;



I !'in

in 'ICW of 110. hlCh our progr'lm thcn gives:

E. S. FOLIAS
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